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The usual second-order two-point velocity correlations for homogeneous, isotropic 
turbulence in a non-divergent fluid are not applicable to tracer pairs in turbulent 
dispersion because on average the tracers separate as though in a divergent fluid. The 
present formulation accounts for the expansion that is associated with dispersion 
through a modification of the Karman-Howarth relations that includes the rate of 
expansion as an unspecified constant. 

1. Introduction 
The Karman-Howarth relations (Karman & Howarth 1938) concern the second- 

order correlations of the velocity components a t  the end points, 1 and 2, of a vector 
r (with magnitude r and components T i )  for homogeneous, isotropic turbulence in a 
non-divergent fluid. These relations have been used in a variety of two-particle 
dispersion models, as for example in those of Durbin (1980) and Kaplan & Dinar 
(1989). But the Karman-Howarth (K-H) relations are for a non-divergent fluid and 
fail to take into account the divergence of the particles that accompanies their 
dispersion. This divergence is associated with the Lagrangian motions of the tracers, 
as elaborated below, and it is not correct to relate the velocities at  the two points in 
question by the K-H relations, which represent the statistics to be found from 
Eulerian measurements. To the knowledge of this author there have been no previous 
attempts to take this difference into account. 

Karman & Howarth (1938) related the second-order correlations of the velocity 
components u:,~ and u; ,~  (i,j = 1-3 in an arbitrary Cartesian coordinate system) to 
the correlation of the components parallel to r ,  f * = (u:, u&), and perpendicular to 
r , g *  = (uL u,*,). Asterisks are used to denote the non-divergent ‘carrier’ fluid, angle 
brackets are an ensemble average for a fixed length r ,  and subscripts p and n denote 
components parallel and perpendicular to r ,  respectively, as illustrated in figure 1 .  

The K-H relations are 

uTiu$ = ( f * - g * ) r i r j / r 2 + g * i J j  (1) 

and 

where a,, is the Kroneker delta and the bar is an ensemble average for a fixed vector 
r .  By homogeneity, isotropy, and scaling u:,, u;,, U X  and u ; ~  all have zero mean and 
unit variance so f *  and g* are correlation coefficients as well as being averaged 
products. 

The values of r are assumed to lie well within an inertial subrange of turbulence. 
Velocities, times, and lengths are scaled by u, T, and L ,  the root-mean-square 
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UI.1 UX, 

FIGURE 1. The vector r between points 1 and 2 and components of the velocities 
u1 and u2 in two dimensions. 

component speed, the Lagrangian integral timescale, and the Eulerian lengthscale, 
respectively. It is assumed that tracer motions are everywhere the same as those of 
the carrier fluid, but the tracers represent a select group of fluid parcels that require 
special consideration because they are Lagrangian tracers. 

If a cloud of tracers is injected into a turbulent carrier fluid in such a way that they 
initially follow the fluid motions, they will at first appear to be non-divergent. That 
is, for all tracer pairs having a separation r ,  initially (u,,) = (u,,) = 0 just as for the 
carrier fluid (asterisks). But after initial transients the tracers separate as though 
they were in a divergent fluid. The apparent rate of divergence is generally a function 
oft because the mean-square spacing of pairs of tracers is increasing and larger scales 
of turbulence are acting on the cloud of tracers. But for tracer pairs with a given r 
the average rate of separation, namely 

( U )  = (dr/dt) = (u2, - ul,) > 0, (3) 

is fixed because it is determined only by r and by characteristics of the turbulence, 
which are assumed to be constant. The assertion in (3) that ( U )  > 0 is an essential 
feature of the present model and is substantiated in Appendix A. 

Two modifications of the K-H relations are required to describe the tracer 
correlations after the passage of any initial transients. 

First, the derivation of (2), which allows us to determine g * ( r )  fromf*(r), depends 
explicitly upon the assumption of a non-divergent fluid, and a modification of (2) 
must be derived for the expanding tracers. 

Second, from the derivation of Karman & Howarth (1938) it is apparent that in 
a uniformly divergent fluid ( 1 )  remains formally unchanged. That is, 

w%j = (f- Y 1 Ti  Tj/T2 + Y 4 ,  (4) 

applies. But average products such asf = <(ulp u,,)) can no longer be interpreted as 
correlations because for an ensemble with fixed r the averaged values (u,,) and 
(u,,) are not zero. In fact, from (3) and by symmetry 

(u,,) = - (u,,) = &( U ) .  

It will be found necessary to express the results in terms of both the average rate 
of separation, ( U ) ,  and (V), the root-mean-square expansion rate. In the absence 
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of a complete model of dispersion these must be treated as undetermined quantities. 
In a particular computation model by the author, however, ( U )  and (V) are 
determined by trial and error, matching input and output values, and (V) is found 
to be proportional to ( U ) ,  as discussed briefly in Appendix B. 

2. The relation between g ( r )  andf(r) 
To modify (2) we follow the general notation of Batchelor (1953). For isotropic 

turbulence the second-order two-point averaged velocity-component product may be 
expressed as 

where points 1 and 2 correspond to the positions x and x + r ,  respectively. Now 
assume that all pairs with separation r are in a hypothetical fluid with divergence 
D(r )  as expressed by 

u j ( x ) u i ( x + r )  = F(r)rirj+G(r)Jtj, (6) 

Multiplying (7)  by uj(x)  and averaging one obtains 

(8) 
a 

- u j ( x ) u i ( x + r )  = Uj(X)D. 
ari 

Then using (6) and the relation u3(x) = G r j / r  one finds 

aF lac D 
ar r ar r 

4F+r-+-- = 5-. (9) 

But T = (u,,) = - i ( U ) ,  and the hypothetical divergence for points with 
separation r and average separation speed ( U ( r ) )  is simply (see Appendix C) '? 

D = 3( U ) / r ,  (10) 

so (9) becomes, 

Except for the non-zero right-hand side this expression is the same as that for a non- 
divergent fluid (Batchelor 1953). 

As in the usual non-divergent development it can be shown from (6) that 

f = r 2 F + G  and g = G ,  (12) 

(13) 

and by substitution into ( 1  1)  one finds 

g = f+ $ af/ar + t( 
as the required revision of (2) that relates g(r)  to f ( r )  for the expanding tracers. 

3. The averaged cross-product f ( r )  
In  this section we consider only parallel components for a fixed value of r and the 

subscript p is temporarily dropped. 
Here we distinguish between U* = u: - uT for the carried fluid and U = u2 - u1 for 

the tracers. U and U* are the same for any tracer pair and the carrier fluid that 
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FIGURE 2. The assumed Gaussian probability density function for the separation speeds in the 
carrier fluid for a particular value of r with ( U * )  = = 0, and the distribution of tracer separation 
speeds with ( U )  > 0. Note tha t  the distribution of IJ' need not be Gaussian. 

contains it but they differ in their distribution functions as illustrated in figure 2. 
This is because the tracers represent a group of fluid parcels that  are a select subset 
of all fluid parcels. Similarly u2 and u, are subsets of u: and u:. 

To allow us to proceed analytically we now assume that u T ,  u: and their difference 
U* have Gaussian distributions. Although it is well known that u: and uz cannot be 
exactly Gaussian, the differences are slight. The more serious approximation 
concerns U* which is known from dynamical theory (e.g. Monin & Yaglom 1971) to 
have a significant and measurable negative skewness (Anselmet et al. 1984). 
Accordingly, justification for use of the Gaussian assumption in the present context 
is required and this is presented in Appendix D. 

The average (u ,  u,) is derived in two steps : (a)  we first find the average of u;" times 
u,* for a fixed value of U * ;  then ( b )  we take an average over the distribution of U 
(figure 2) .  In  ( b )  the asterisks disappear because the u1 (for example) are a subset of 
the u: over which the average is taken. 

( a )  Designate a fixed value of U* as 

CT,* = u: - u;. (14) 

Here u: and u,* are variates, but they are related by U,*. There are many 
combinations of u: and u; that  can satisfy (14) for a specified U,* and we must find 
their averaged product. To do this represent the correlation between u: and u; by 
the formula 

u; = f *u;"+qzi, (15) 

where y = (1 -f*')f and 4 is a hypothetical random number with the same normal 
distribution as u: and u;. One may think of (15) as saying: given values of u:, the 
random values ii will generate values of u: that  yield the required correlation, f * .  
This can be seen by multiplying (15) by u: and averaging. 

Now eliminate u,* between (14) and (15) and solve for 4. Then for any selected 
values of U,* and u;" the required random value is given by 

(16) zi = (U,* + (1 -f*) u:,/y. 

It follows that given u;" the probability of obtaining lJ,* by drawing an independent 
random value zi is 

P( IT,* : u;) = P(6 = (cy  + (1  - f * )  u?)/q). (17) 
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Since Zi is normally distributed one can write 

Now, for the fixed U,* an average of some function of u:, say h(u:), is given by 

where K = P(u:)P(U: :uT) = -exp 
2K 2 

and (19) can be directly integrated. Some averages of interest for fixed U,* are - -  
u2* = -u; = gJ;, 

u2*z = UTZ = i(l+ f *) +'U*2 4 f  

u: u; = i( 1 + f *) -py. 

(21 I 
(22) 

(23) 

- -  - 
and 

( b )  Now letting U,* vary, an average over the distribution of U is given by 

Applying (24) t o  (21), (22), and (23) one directly obtains (restoring the subscript p )  

(UZ,) = -<u,,> = w> 
<u;p> = (G,> = $1 +f *)+t(V>, 
f = ( U I P U Z P )  = & l + f * ) - a ( V > .  

as required from ( 5 ) ,  and 

Substituting (27) and (13) into (4) one now obtains 

(25)  

+(#+f*)--f(V)+----- 4 raf* ar 8 ra(V)+#(u)z)8i, ar (28) 

as the expression for the averaged cross-products of the component speeds uli and uzj 
for dispersing tracers. The linear correlation coefficient between ull and uzj also can 
be found from (25)-(27). The only assumption, apart from the conditions of the 
problem (homogeneity, etc.), is that U*, u: and ug have Gaussian distributions. 

4. Conclusions 

further by assuming the form off *. Appropriate formulae for the expansion are 
One may proceed further by assuming specific formulae for ( U )  and ( U Z )  and still 

( U )  = CI rfl (29) 

and (V>+ = ~ 2 r f l  (30) 

where, because of the scaling of r and t ,  C1 and C2 are dimensionless and r + 1 .  
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The correlation f *  is well represented in the inertial regime by 

f * = e x p ( - r " ) z l - r " .  

It has been found (Faller & Choi 1985) that quite generally p = &a, and for three- 
dimensional turbulence in the inertial regime a = f .  With these substitutions for (U), 
(V), and f *, (28) reduces to 

12 23 = r ~ ( + ~ + ~ C 2 2 - ~ C 1 2 ) r i r j / r 2 + ( 1 + r ~ ( - f - & ' 2 2 + ~ C 1 2 ) ) & i j .  (31) 

The reader may notice that (26) and (27) do not obviously reduce to (u2 ) = 1 and 
(u;", uzp) =f*, respectively, for the non-divergent case ( U )  = 0. The validity of (26) 
and (27) has been verified by direct numerical computation, however, by starting 
with u&, and uzp from (15) for lo6 tracer pairs and for several values off*. Then a 
subset of data having an arbitrary distribution of U was selected in each test case to 
form the average (V) in (26) and (27). From these calculations it was clear that 
when ( U )  was zero the $( U Z )  term always compensated the &( 1 +f*) term to make 
(u::) = 1 and (u:, u ! ~ )  = f*. 

Equation (31) is suitable for use in a dispersion model with C1 and C2 regarded 
as constants to be determined by trial and error. Such a model, which satisfies all of 
the cross-products represented on the left-hand side of (31), has been proposed 
(Faller & Choi 1985) and some preliminary results are discussed in Appendix €3. The 
full model, based in part upon the contents of this paper, will be presented for 
publication in the near future. 

2p 

This research was supported in part by the National Science Foundation under 
Grant ATM-82-17139. The author is also indebted to one of the referees for calling 
attention to the approximate nature of the Gaussian assumption for U*. 

Appendix A. The reality of ( U )  > 0 
Consider a cloud of tracers all with initial spacings ro < rf, some fixed value. As the 

tracers disperse, when each pair first attains r = rf it must have U > 0. Once r > rf 
for any pair, that pair may again pass through rf with U < 0, but eventually the two 
tracers will separate and again pass through rf with U > 0. The number of pairs with 
r < rf must decrease with time and it is clear qualitatively that ( U )  > 0. 

The following similar thought experiment illustrates the dependence of this result 
upon the Lagrangian integral timescale. Consider many individual tracer pairs, each 
tracer moving inertially, i.e. having an infinite Lagrangian timescale. (For example 
one may imagine marked molecules with a mean free path much greater than rf.)  A 
pair with r, < rf and U, < 0 must change to I: > 0 and pass through rf with U > 0, 
as would a pair with U, > 0. All pairs with r > rI and U, > 0 do not approach rf, but 
those with U, < 0 may reach rf only to pass through rf once again with 151 > 0. Thus 
in sum, ( U ( r ) )  > 0. While this result is for T+ 00 we should expect i t  to be true for 
any finite T. but we might expect ( C ( r ) )  += 0 for T+O. Indeed, from Taylor's (1921) 
well-known result 

(x-xo)2 = 2 U W ,  (A 1 )  

where (x-x0)'- is the mean-square departure of tracers from their origins a t  very large 
t ,  as 7'+ 0 the dispersion rate vanishes. Thus finite T and ( U )  > 0 accompany each 
other and are essential ingredients of dispersion. 
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Appendix B. Determination of the constants C1 and C2 
Preliminary calculations with the dispersion model proposed in Faller & Choi 

(1985) (modified to include the present formulation and other corrections) have 
matched input values Cli and C2, with output values C1, and C2, by trial and error. 
It has been found that internal consistency and the satisfaction of certain integral 
constraints are obtained only with the fixed ratio Cl/C2 = 1.057. Moreover, the 
values of C1 and C2 are then uniquely determined by the value chosen for 

C = L/uT, 

a necessary input parameter for the model. 
According to Corrsin (1963) the ratio L/uT is approximately 3. In view of the 

prominence of Corrsin in turbulence research and in the determination of the value 
of this ratio, it would be appropriate to refer to this ratio as the Corrsin constant. The 
Corrsin constant, then, is found to be the only parameter of the proposed dispersion 
model, as will be shown in detail in a future publication. 

Appendix C. The hypothetical divergence, D 
The divergence D in (10) applies only to pairs of tracers with spacing r and with 

appropriate Lagrangian histories. Accordingly imagine a spherical shell of diameter 
r containing an ensemble of many pairs of such tracers with the tracers of each pair 
on opposite sides of the shell. (Each pair may come from a different realization of the 
turbulence.) Although occasional pairs may have negative U ,  as discussed in 
Appendix A, and although all will have components not parallel to their separation 
vector, the majority will have U > O  and the average separation speed will be 
( U )  > 0. The rate of expansion of the shell along any axis, then, will be ( U ) / r  and 
the divergence of the spherical shell that is representative of tracer pairs with spacing 
r will be D = 3( U ) / r .  The same average rate of separation of pairs would be found 
if the Eulerian velocities of similarly selected pairs were measured in a turbulent fluid 
having the divergence D. 

Appendix D. The assumption of Gaussian distributions for u:, u$ and U* 
Although it is well known that even isotropic turbulence cannot have exactly 

Gaussian velocity distributions, U T  and u: must be symmetrical and the Gaussian 
assumption is thought to be not serious in this application. This assumption first 
enters in (15) which produces a distribution of u: that is the same as that of u: only 
if u: and .Li are randomly selected from a Gaussian distribution. (As a counterexample, 
if u: were selected from a box-car distribution it is clear that u: could not have the 
same distribution except for f * = 1. )  

The assumption of a Gaussian U* would seem to be more serious. The skewness of 
U* in the inertial range is known to be (Monin & Yaglom 1971) 

(U*3)  = -6er, (D  1) 

where the rate of dissipation, 8, is O(u3 /L)  in dimensional terms but is O(1) in the 
present non-dimensional formulation. The normalized skewness is obtained by 
dividing (D 1 )  by 

(u*z>t = ((u:-ur)2)i = $(l-j*(r))t, (D 2 )  
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where we have used <u:') = (u:') = u2 = 1 and f * = <u:uz), and where subscript 
p is suppressed. Because in the inertial range 

j * ( r )  = exp(-rg) z I-$ (D 3) 

it follows that the skewness is 

Thus S = O(1) in the inertial range and is independent of r ,  as should be the case. 
Conversely, knowledge that S should be independent of r justifies (or can be used to 
derive) (D 3). We now ask whether this skewness should be a significant factor in 
dispersion. 

Because 
<U*3) = ( U ~ 3 - 3 u ~ ' U : + 3 U 2 * U y - u : 3 ) ,  (D 5 )  

where (ur3)  and ( u ; ~ )  = 0, i t  is apparent that S is determined entirely by third- 
order correlations. But the Gaussian approximation of U* and the use of (15) implies 
that third-order correlations vanish. The issue, then, is the relative importance of 
third-order correlations for the proposed modifications of the K-H relations and for 
dispersion. For although third-order correlations are very significant dynamically, 
their relative importance in the kinematics of dispersion may be questioned. 

The K-H relations and the dispersion model referred to in Appendix B involve 
only second-order correlations, and the assumption of a Gaussian U* is therefore 
consistent. But we cannot prove or confidently assert that the third-order 
correlations are of little significance in dispersion. 
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